Page:IntroductionToMathematicsWhitehead.pdf/20

This page has been proofread, but needs to be validated.

is of vital importance, both to philosophy and to mathematics; for by it the notion of infinity is introduced. Perhaps it required the introduction of the arabic numerals, by which the use of letters as standing for definite numbers has been completely discarded in mathematics, in order to suggest to mathematicians the technical convenience of the use of letters for the ideas of any number and some number. The Romans would have stated the number of the year in which this is written in the form MDCCCCX, whereas we write it 1910, thus leaving the letters for the other usage. But this is merely a speculation. After the rise of algebra the differential calculus was invented by Newton and Leibniz, and then a pause in the progress of the philosophy of mathematical thought occurred so far as these notions are concerned; and it was not till within the last few years that it has been realized how fundamental any and some are to the very nature of mathematics, with the result of opening out still further subjects for mathematical exploration.

Let us now make some simple algebraic statements, with the object of understanding exactly how these fundamental ideas occur.

For any number , ;

For some number , ;

For some number , .