We have therefore

(226)

(227)

The average values of the powers of the anomalies of the energies are perhaps most easily found as follows. We have identically, since
is a function of
, while
is a function of the
's and
's,
![{\displaystyle {\begin{aligned}&\Theta ^{2}{\frac {d}{d\Theta }}\mathop {\int \ldots \int } _{\rm {phases}}^{\rm {all}}(\epsilon -{\overline {\epsilon }})^{h}e^{-{\frac {\epsilon }{\Theta }}}\,dp_{1},\ldots dq_{n}=\\&\mathop {\int \ldots \int } _{\rm {phases}}^{\rm {all}}{\bigg [}\epsilon (\epsilon -{\overline {\epsilon }})^{h}-h(\epsilon -{\overline {\epsilon }})^{h-1}\Theta ^{2}{\frac {d{\overline {\epsilon }}}{d\Theta }}{\bigg ]}e^{-{\frac {\epsilon }{\Theta }}}\,dp_{1},\ldots dq_{n}\end{aligned}}}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/a0fc41dff72235181d3a8dcafd91d67eb52668f5.svg)
(229)
i. e., by (108),
![{\displaystyle \Theta ^{2}{\frac {d}{d\Theta }}{\bigg [}{\overline {(\epsilon -{\overline {\epsilon }})^{h}}}e^{-{\frac {\psi }{\Theta }}}{\bigg ]}={\bigg [}{\overline {\epsilon (\epsilon -{\overline {\epsilon }})^{h}}}-h{\overline {(\epsilon -{\overline {\epsilon }})^{h-1}}}\Theta ^{2}{\frac {d{\overline {\epsilon }}}{d\Theta }}{\bigg ]}e^{-{\frac {\psi }{\Theta }}},}](../_assets_/eb734a37dd21ce173a46342d1cc64c92/3bc6c5a5067a1fa158c2dec61a4579e743945c48.svg)
(230)
- ↑
In the case discussed in the note on page 54 we may easily get

which, with

gives

Hence

Again

which with

gives

hence
