Page:Carroll - Euclid and His Modern Rivals.djvu/19
This page has been proofread, but needs to be validated.
ARGUMENT OF DRAMA.
xv
PAGE
|
Other subjects of enquiry:—
....................................................................................................................................................................................................................................................
|
15 |
| (3) |
Superposition;
|
| (4) |
Use of diagonals in Euc. II;
|
| (5) |
Treatment of Lines;
|
| (6) |
Treatment„ of Angles;
|
| (7) |
Euclid's Propositions omitted;
|
| (8) |
Euclid's„ Propositions„ newly treated;
|
| (9) |
New Propositions;
|
| (10) |
Style, &c.
|
|
List of authors to be examined, viz.:—
....................................................................................................................................................................................................................................................
|
16 |
|
Legendre, Cooley, Cuthbertson, Henrici, Wilson, Pierce, Willock, Chauvenet, Loomis, Morell, Reynolds, Wright, Syllabus of Association for Improvement of Geometrical Teaching, Wilson's 'Syllabus'-Manual.
|
§ 3. The combination, or separation of Problems and Theorems.
|
Reasons assigned for separation
....................................................................................................................................................................................................................................................
|
18 |
|
Reasons for combination:—
....................................................................................................................................................................................................................................................
|
19 |
| (1) |
Problems are also Theorems;
|
| (2) |
Separation would necessitate a new numeration,
|
| (3) |
and hypothetical constructions.
|
§ 4. Syllabus of propositions relating to Pairs of Lines.
|
Three classes of Pairs of Lines:—
....................................................................................................................................................................................................................................................
|
20 |
| (1) |
Having two common points;
|